Differential regulation of Purkinje cell dendritic spines in rolling mouse Nagoya (tgrol/tgrol), P/Q type calcium channel (α1A/Cav2.1) mutant
نویسندگان
چکیده
Voltage dependent calcium channels (VDCC) participate in regulation of neuronal Ca(2+). The Rolling mouse Nagoya (Cacna1a(tg-rol)) is a spontaneous P/Q type VDCC mutant, which has been suggested as an animal model for some human neurological diseases such as autosomal dominant cerebellar ataxia (SCA6), familial hemiplegic migraine and episodic ataxia type-2. Morphology of Purkinje cell (PC) dendritic spine is suggested to be regulated by signal molecules such as Ca(2+) and by interactions with afferent inputs. The amplitude of excitatory postsynaptic current was decreased in parallel fiber (PF) to PC synapses, whereas apparently increased in climbing fiber (CF) to PC synapses in rolling mice Nagoya. We have studied synaptic morphology changes in cerebella of this mutant strain. We previously found altered synapses between PF varicosity and PC dendritic spines. To study dendritic spine plasticity of PC in the condition of insufficient P/Q type VDCC function, we used high voltage electron microscopy (HVEM). We measured the density and length of PC dendritic spines at tertiary braches. We observed statistically a significant decrease in spine density as well as shorter spine length in rolling mice compared to wild type mice at tertiary dendritic braches. In proximal PC dendrites, however, there were more numerous dendritic spines in rolling mice Nagoya. The differential regulation of rolling PC spines at tertiary and proximal dendrites in rolling mice Nagoya suggests that two major excitatory afferent systems may be regulated reciprocally in the cerebellum of rolling mouse Nagoya.
منابع مشابه
GABAA Receptor Expression in the Forebrain of Ataxic Rolling Nagoya Mice.
The human CACNA1A gene encodes the pore-forming α1 subunit of CaV2.1 (P/Q-type) calcium channels and is the locus for several neurological disorders, including episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6) and Familial Hemiplegic Migraine type 1 (FHM1). Several spontaneous mouse Cacna1a mutant strains exist, among them Rolling Nagoya (tgrol), carrying the R1262G point mutat...
متن کاملCerebellar Abnormalities Based on Chemical Neuroanatomy in Cav2.1 Mutant, Rolling Mouse Nagoya
This review summarizes cerebellar abnormalities based on chemical neuroanatomy in the ataxic mutant, rolling mouse Nagoya. This mutant mouse carries a mutation in the gene encoding for the α1A subunit of the voltage-gated P/Q-type Ca channel (Cav2.1), as do tottering, leaner, rocker and wobbly mice, and is a useful model for human neurological diseases such as episodic ataxia type-2 and familia...
متن کاملCurrent Neurobiology 2011; 2 (1):
The present study examined the development of the axonal torpedoes of the cerebellar Purkinje cells in a Cav2.1 channel mutant, rolling mouse Nagoya. Calbindin D-28k immunostaining revealed a few torpedoes in both the cerebellar white matter and all three subdivisions of the deep cerebellar nuclei of rolling mice on postnatal day (PD) 21, while there was no difference in either number among the...
متن کاملAlternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.
P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 t...
متن کاملReduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)).
Recent genetic analyses have revealed an important association of the gene encoding the P/Q-type voltage-dependent Ca(2+) channel alpha(1A) subunit with hereditary neurological disorders. We have identified the ataxic mouse mutation, rolling Nagoya (tg(rol)), in the alpha(1A) gene that leads to a charge-neutralizing arginine-to-glycine substitution at position 1262 in the voltage sensor-forming...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2010